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Abstract
Quantum phase transitions affecting the structure of ground and excited states of
integrable systems with the Mexican-hat type potential are shown to be related
to a singular torus of classical orbits passing the point of unstable equilibrium.
As a specific example, we consider nuclear collective vibrations described by
the O(6)–U(5) transitional Hamiltonian of the interacting boson model. While
all states with zero values of the O(5) invariant undergo a continuous phase
transition when crossing the energy of unstable equilibrium, the other states
evolve in an analytic way.

PACS numbers: 21.60.Ev, 05.70.Fh, 02.30.Ik

Motions of a classical integrable system with n degrees of freedom in the phase space stick
onto surfaces that are topologically equivalent to 2n-dimensional tori. It is generally thought
that this feature results in a fully analytic expressibility of observables for integrable systems.
However, in some cases the analyticity cannot be maintained in the global sense. A common
obstacle for n = 2 is monodromy [1], related to the existence of an anomalous, so-called
pinched torus of orbits. Most usually, the pinched torus originates from a singular point of
unstable equilibrium of the focus–focus type and is connected with a class of trajectories with
period τ → ∞ if the energy crosses a certain critical value Emon. The presence of such orbits
in the phase space also affects the quantum spectrum, producing a ‘crystal defect’ in the joint
spectrum of commuting operators [2].

One of the systems with monodromy is the spherical pendulum [3]. Here, the pinched
torus is formed by orbits passing the upper point with just the energy needed for equilibration.
Classical motions with zero value of the conserved angular momentum Lz undergo a qualitative
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change and the corresponding quantum lattice in the joint spectrum has a defect at E = Emon

and the Lz quantum number m = 0. The parts of the lattice below and above Emon are
characterized by nearly degenerate multiplets of states with the same vibrational and rotational
quantum numbers, respectively, and both types of multiplets fail to smoothly extend across
the monodromy point to the other domain.

Another example of monodromy follows from the Mexican-hat potential V ∝ r4 − r2

with r2 = x2 + y2 [4]. The local maximum at r = 0 corresponds to an unstable equilibrium
with Emon = 0, which results in a pinched torus of Lz = 0 orbits. Crossing the critical
energy induces a transition between two types of Lz = 0 motions, the first type confined
within the annulus r ∈ [rmin, rmax], and the second one traversing across a compact region
r ∈ [0, rmax]. Also the joint spectrum shows a crossover between multiplets characterized
by the radial quantum number nrad (below Emon) and those labelled by the principal quantum
number 2nrad + m (above Emon) [4].

These effects are reminiscent of another interesting class of phenomena—quantum phase
transitions (QPTs). These are usually introduced as nonanalytic (in the thermodynamic limit)
changes of system’s ground-state properties with external parameters [5, 6]. Here, the concept
will be extended also to excited states. The first-order or a continuous QPT, respectively, for
the ith state is defined as the discontinuity of the first derivative or a more subtle nonanalyticity
in the dependence of excitation energy Ei on a control parameter η. It is related to a
nonanalytic evolution of the respective wavefunction |ψi〉. The aim of this letter is to show
that monodromy and excited-state QPTs in integrable systems are closely related. This is
exemplified by quadrupole vibrations of atomic nuclei in the so-called γ -soft regime [7, 8].

Recall that simplified models of nuclear collective motions take into account only the
degrees of freedom corresponding to quadrupole deformations [7]. The quadrupole tensor
α is characterized by five parameters, two of them describing the deformed shape and the
other three its orientation. A pair of deformation parameters can be constructed from
the only two independent scalar combinations of α, namely [α × α](0) = β2/

√
5 and

[[α ×α](2) ×α](0) = −√
2/35β3 cos 3γ , where [•×•](λ) stands for coupling of the quantities

involved to angular momentum λ. Variables β ∈ [0,∞) and γ ∈ [0, 2π) represent Bohr
deformation parameters [7], which can be visualized as polar coordinates in the plane x × y.
The radius β measures the overall deformation, while the angle γ characterizes the deformed
shape type, orientation in the principal frame, and the degree of triaxiality.

The collective Hamiltonian can be written as

H = Trot + Tvib + Aβ2 + Bβ3 cos 3γ + Cβ4 + · · · , (1)

where Trot and Tvib = Kπ2 + · · · [with π2 = π2
x + π2

y = π2
β + (πγ /β)2] stand for the rotational

and vibrational kinetic energies (πi denotes the momentum canonically conjugated to
coordinate i). {K,A,B,C, . . .} is a set of external parameters (K,C > 0). Here, we
included only the lowest order vibrational kinetic terms and the potential energy up to the
quartic term.

If Hamiltonian (1) does not depend on γ (i.e., is ‘γ -soft’), it is integrable. In the following,
we will deal with motions at zero angular momentum J , thus Trot = 0, when the system has
just two vibrational degrees of freedom and in the γ -soft case yields two commuting integrals
of motions—energy E and momentum πγ = xπy − yπx (analogue of Lz). Without the
higher order terms and for B = 0, A < 0 the potential energy in equation (1) represents the
Mexican-hat potential that leads to monodromy at E = πγ = 0.

It is known [9] that Hamiltonian (1) exhibits the ground-state QPT from deformed (β0 > 0)

to spherical (β0 = 0) equilibrium shape at Ac = B2/4C. For B = 0 we have Ac = 0 and
the transition is continuous (of second order in the Ehrenfest classification). In this case, the



Letter to the Editor L517

QPT is realized within an integrable domain with monodromy. Note that the B = 0, A < 0
half-line itself demarcates the first-order QPT between prolate (γ0 = 0, B < 0) and oblate
(γ0 = π/3, B > 0) shapes, so the second-order transition lies in the intersection of three
first-order phase separatrices [10].

Specific realization of Hamiltonian (1) can be achieved within the interacting boson model
(IBM) [11]. The model, formulated in terms of s and d-bosons (with angular momenta 0 and 2),
exploits the decompositions of dynamical algebra U(6) into chains of subalgebras terminating
at the symmetry algebra O(3). Three such chains, called after the highest subalgebra U(5), O(6)
and SU(3) define dynamical symmetry limits (if the Hamiltonian is composed of invariants of
the respective chain), while transitional Hamiltonians are located within a ‘triangle’ between
these limits. In the dynamical-symmetry cases the model is integrable, and this property
is preserved also along the transition between O(6) and U(5), where the underlying O(5)
symmetry results in conserved quantum number v called seniority [12].

In the following, we will consider a simplified O(6)–U(5) transitional Hamiltonian given
by

H(η) = η
nd

N
− (1 − η)

Q · Q

N2
, (2)

where N stands for the total number of bosons, nd = d† · d̃ for the d-boson number operator
and Q = d†s + s†d̃ for the quadrupole operator. Note that the dot represents scalar coupling
and d̃µ = (−)µd−µ. For Hamiltonian (2) the O(6) dynamical symmetry is located at η = 0
and U(5) at η = 1. Using Glauber coherent states |α〉 ∝ exp

(
αss

† +
∑

µ αµd†
µ

)|0〉 (where
αs can be eliminated by fixing the average of N and the global phase) [13], one can rewrite
Hamiltonian (2) in the form (1) with B = 0:

H
(η)

clas = T
(η)

rot +
η

2
π2 + (1 − η)β2π2 +

5η − 4

2
β2 + (1 − η)β4. (3)

Since the role of h̄ is played by N−1, the classical limit is attained for N → ∞. Moreover,
in the J = 0 case (Trot = 0), due to the coherent-state relation C

O(5)
2

/
N2 �→ π2

γ , where

C
O(5)
2 = nd(nd + 3) − (d† · d†)(d̃ · d̃) is the O(5) invariant with eigenvalues v(v + 3), the

momentum πγ can be (for N → ∞) associated with relative seniority δ = v/N (where
v = 0, 3, 6, . . . � N for J = 0).

It is clear from equation (3) that a continuous QPT between O(6)- and U(5)-like ground-
state configurations happens at ηc = 4/5, where the potential changes from the Mexican-hat
shape to a quartic oscillator. Note, however, that the IBM shows some specific differences from
these standard potential systems: first, due to boundedness of Hamiltonian (2) the physical
domain is restricted to β ∈ [0,

√
2], πβ ∈ [0,

√
2] and πγ ∈ [0, 1]. Second, equation (3) also

contains an unusual kinetic term ∝β2π2. Third, for J = 0 the quantum grid of states in E
versus v differs from the standard E versus m grid associated with the given potential; this
results from inherent differences between the O(5)- and O(2)-based angular momenta.

Figure 1 illustrates classical monodromy of Hamiltonian (3) at absolute energy Emon = 0
for η < 4/5. The Poincaré phase-space section shows crossings of 30 orbits of πγ > 0 with
the plane β ×πβ . The πγ = 0 orbits passing asymptotically the point β = 0 form the pinched
torus, whose section corresponds to the cusped enveloping curve of the filled area. The surface
of the pinched torus, nonanalytic at β = 0, interpolates between two distinct types of analytic
πγ = 0 tori at lower and higher energies. This results in a nonanalytic growth of the available
phase-space volume 
(E) = ∫

δ(H − E) dπx dπy dx dy at E = Emon. In particular,


(E) = 4π

∫ βmax(E)

βmin(E)

πβ(E, β, πγ = 0)β dβ, (4)
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Figure 1. Poincaré phase-space section associated with Hamiltonian (3) at E = 0 and η = 0.6
and the enveloping pinched torus of πγ = 0 orbits (inset).

 0

 20

 40

 60

 80

-0.2  0  0.2  0.4  0.6

E

Ω
 o

r 
dΩ

/d
E

(r
el

at
iv

e 
un

its
)

3x

Ω
dΩ/dE

Figure 2. The available phase-space volume (4) and its first derivative at η = 0.6.

where πβ as well as βmin and βmax are evaluated from equation (3), has a singular tangent at
zero energy, as shown in figure 2. Note that 
(E) is related to the smooth part of the quantum
density of states ρ(E) = Tr δ(H − E); the oscillatory part depends on properties of periodic
orbits (also singular at Emon [8]) and is not discussed here.

Features of Hamiltonians (2) and (3) related to the anomalous behaviour at Emon were
recently analysed in [8]. It was shown that monodromy is correlated with two important
dynamical effects: (i) on the classical level, trajectories with predominantly large values of the
ratio R = τγ /τβ of β- and γ -vibration periods transform to those within a narrow band above
R = 2. While values R � 2 observed for E < Emon correspond to zig-zag orbits inside the
accessible annular region in the x × y plane, the value R ≈ 2 valid for E > Emon is connected
with ‘bouncing-ball’ orbits traversing through the central region. In particular, the πγ = 0
trajectories undergo a discontinuous change from R = ∞ to R = 2. (ii) On the quantum
level it was shown that O(6)- and U(5)-like types of elementary cells in the E versus v lattice
of J = 0 quantum states exist in energy domains below and above Emon, respectively, i.e.,
interchange at about the monodromy energy. This is accompanied by degeneracy of levels
with different seniorities and by coherent patterns of avoided crossings of levels with the same
seniority, both at energy E ≈ Emon.
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To show that these structures correspond to QPT evolutions of excited states with zero
seniority, we invoke an oscillator approximation recently discussed by Rowe [14]. The method
is valid on the O(6) side of the transition for finite seniorities and asymptotic boson numbers,
when x = 2nd/N − 1 can be treated as a continuous variable. Eigenstates |ψi〉 are expressed
as conventional wavefunctions ψi(x) ≡ 〈nd |ψi〉 and the scaled Hamiltonian H(η)/(1 − η)

from equation (2) turns into a differential operator

− 4

N2

d

dx
(1 − x2)

d

dx
+

[
x − η

4(η − 1)

]2

−
[

5η − 4

4(1 − η)

]2

, (5)

where the use is made [14] of the fact that Hamiltonian (2) only connects states with
�nd = 0 ± 2 and is therefore local in x for N → ∞. The last expression, after neglecting
O(N−1) and higher terms, reduces to a quantum oscillator with variable centroid position and
energy shift, and with an x-dependent mass. (The latter feature was not discussed in [14] and
can be neglected for x ≈ 0.) Therefore, the O(6) quasi-dynamical symmetry extends away
from η = 0 through an analytic transformation of eigensolutions.

However, the analytic extension is limited to the range of η where the semiclassical
wavefunction is located within the physical domain nd ∈ [0, N ], thus x ∈ [−1, +1] ≡
[xmin, xmax]. Once the classical turning points of the oscillator particle reach these bounds,
expression (5) is no longer applicable for the given state. This happens when the actual level
energy Ei crosses the value of the oscillator potential energy at the lower edge, V (η)

osc (xmin) = 0,
i.e., just when Ei = Emon. At this point, the probability distribution P(x) ∝ ẋ−1 (where ẋ

stands for the velocity of the oscillator particle) becomes singular since the mass diverges for
x = ±1 and the particle spends infinite time in an infinitesimal vicinity of xmin. An equivalent
conclusion follows from the classical Hamiltonian (3), which for E = Emon yields a singular
concentration of the probability distribution P(β) ∝ β̇−1 at β = 0. As the analytic extension
of η = 0 semiclassical wavefunction cannot pass over the singularity, the parameter range is
split into two disconnected branches, which can be named quasi-O(6) and quasi-U(5).

The ground-state energy E0 crosses Emon at ηc = 4/5. For the other v = 0 states with
increasing excitation energy, the crossings form a descending sequence of points within the
interval η ∈ (0, ηc). These are positions of excited-state QPTs where individual eigenfunctions
|ψi〉 and energies Ei evolve in a nonanalytic way. Note that for Hamiltonian (2), which has
the form H(0) + ηV , the relation dEi/dη = 〈ψi |V |ψi〉 transmits nonanalytic behaviours of
wavefunctions to level energies. Since 〈ψi |V |ψi〉 itself changes in a continuous way, the QPT
for excited states is—like the one for the ground state—continuous. The present analysis,
however, does not allow one to specify the type of nonanalyticity for i > 0.

Finite-N precursors of excited-state QPT’s are shown in figure 3, where we display
J = v = 0 level dynamics and two examples of wavefunctions (nd -distributions) for N = 80.
Wavefunctions for Ei < 0 are approximate eigenstates of the oscillator Hamiltonian (5).
They reach the nd = 0 edge just when passing E = 0 (the region with multiple avoided
crossings) where the validity of the quasi-O(6) description for the given level ends. At the
transition, the slope of individual energy curves tends to vanish, in agreement with the fact that
〈ψi |V |ψi〉 = 0 at Ei = Emon for N → ∞. The Ei > 0 branch of wavefunction is analytically
connected to the U(5) limit.

Formula (5) is valid only if δ = v/N → 0 in the classical limit, i.e., for v ≈ 0 in finite-N
approximations. Therefore, a question appears what happens to states with δ ∈ [0, 1]. The
answer can be obtained from equation (3) that allows one to extract an effective potential
corresponding to the fixed value πγ = δ:

V
(η,δ)

eff (β) = ηδ2

2

1

β2
+ (1 − η)δ2 +

5η − 4

2
β2 + (1 − η)β4. (6)
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This expression contains, besides the standard potential terms of Hamiltonian (3), also a
constant shift and a centrifugal term ∝β−2 resulting from the fixed value of πγ . The centrifugal
term keeps the solutions with δ �= 0 away from β = 0 (in agreement with the fact that minimal
nd for a given v is equal to v [11]) and destroys the Mexican-hat shape of the potential
for states with nonzero seniority. Does the phase-transitional evolution survive under these
circumstances?

The minimum β0 of Veff interpolates between β0 = 1 at η = 0 and β0 = √
δ at η = 1. As

we know, for δ = 0 the minimum has a discontinuous derivative dβ0/dη at ηc = 4/5 which
leads to a jump in the second derivative of the Veff minimal value. On the other hand, for
δ �= 0 the minimum evolves in a fully analytic way, as can be seen from the fact that within
η ∈ [0, 1] it does not cross the border where the sign of ∂2Veff/∂β

2 changes (for v = 0 this
happens at ηc). Therefore, Veff(β0) is analytic for δ �= 0 implying that no phase transition
occurs in the behaviour of the lowest state with v �= 0. Although potential (6) itself does not
allow us to predict properties of individual excited states, the above result and the absence of
the central maximum in the δ �= 0 effective potential make one assume that critical behaviour
dies out for all states with nonzero seniority. This conforms with numerical calculations of
finite-N spectral properties [8] and also with classical considerations showing that only the
πγ = 0 trajectories change the form abruptly (at the monodromy point) as η and/or E vary.
Of course, for very small v’s one still obtains rapid, though analytic structural rearrangement
in the E ≈ 0 region.

In summary, we gave an example of integrable system where monodromy triggers
continuous QPT evolutions of excited-state energies and wavefunctions. It shows that the
critical value of interaction parameter may depend on the excitation and that some subsets of
states may not undergo the phase transition at all. In the derivation, the key role was played
by the oscillator approximation (5) (for v = 0 states) and by the effective potential (6) (for
v �= 0). Links of QPT phenomena to specific motions on the classical level were found crucial.
It would be interesting to learn how the above-discussed properties extend to the nonintegrable
regime with B �= 0.
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It can be anticipated that our conclusions, apart from having particular consequences for
J = 0 collective states in γ -soft nuclei between deformed and spherical shapes, are generic for
all quantum systems with the Mexican-hat potential. In particular, recent studies [15] of the
Lipkin model disclosed very similar nonanalytic structures of quantum properties correlated
with the top of a double-well potential. Since the fundamental Ginzburg–Landau model [16]
of spontaneous symmetry breaking is based on the same type of potential, the present results
might be relevant in rather broad context.
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